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Experimental Investigation of Nonuniform 
Heating and Heat Loss from a Specimen for the 
Measurement of Thermal Diffusivity by the 
Laser Pulse Heating Method 

T. Y a m a n e ,  l-~ S. K a t a y a m a ,  t and M.  T o d o k i  I 

Rc'~'eired .4pril 22, 1996 

Nonunilbrm heating effect and heat loss effect from the specimen in the 
mcast, rement of thermal diffusivity by the laser pulse heating method have been 
experimentally investigated using an axially symmetric Gaussian laser beam and 
a laser beam homogenized with an optical filter. The degree of error is theoreti- 
cally estimated based on the solution of the two-dimensional heat conduction 
equation under the boundary condition of heat loss from the surface of the 
specimen in the axial direction and the initial conditions of axially symmetric 
nonuniform ~tnd unilbrm heating. A correction factor, which is dctcrmined by 
comparison of the entire experimental and the theoretical history curves, is 
introduced to correct the values obtained by the conventional t~ ~ method. The 
applicability of this modilied curve-fitting method has been experimentally 
tested using materials in the thermal diffttsivity range 10 _3 to [ cm-' . s  i. The 
experimental error due to the nonuniform heating and heat loss was reduced to 
approximately 3%. 

KEY WORDS: laser pulse heating method: nonuniforna heating; thermal dill 
fusivity. 

1. I N T R O D U C T I O N  

T h e  l a se r  pu l se  h e a t i n g  m e t h o d  for  m e a s u r i n g  t h e r m a l  d i f fus iv i ty  was  

d e v e l o p e d  b y  P a r k e r  et  al. [ 1 ]  in 1961 u s i n g  t he  a n a l y t i c a l  s o l u t i o n  for  

o n e - d i m e n s i o n a l  h e a t  f low u n d e r  t he  l b l l o w i n g  c o n d i t i o n s .  

~ Materials Characterization Laboratories, Toray Research Center, Inc., Sonoyama 3-3-7, 
Otsu, Shiga 520, Japan. 

2 To whom correspondence should be addressed. 
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(a) The duration of the laser pulse is negligibly short compared to 
the characteristic time of thermal diffusion. 

(b) The fi'ont surface of the specimen is uniformly heated by a spa- 
tially homogenized laser beam. 

(c) The specimen is adiabatic during measurement after the laser 
energy is absorbed. 

(d) The specimen is uniform (in geometry l and homogeneous. 

(e) The specimen is nontransparent to the laser beam and to thermal 
radiation. 

The thermal diffusivity, ~, is calculated fi'om the measured time-tem- 
perature curve of the back surlhce of the specimen based on the "t~ 2 
method" using 

b 2 
~x= 1 . 3 7 0 - -  (1) 

7~2/t 2 

where b is the thickness of the specimen and t l 2 is the half-rise time defined 
by the interval required for the back-surface temperature to reach one-half 
of the maximum temperature rise. Currently, the laser pulse heating 
method is generally accepted as the standard method for measuring the 
thermal diffusivity of solid materials [2]. However, some of the above con- 
ditions, particularly conditions (a) and (b), are not entirely satisfied in the 
actual measurements. For condition (a), the finite duration of the laser 
pulse effect can be corrected by Azumi and Takahashi's [3] center-of- 
gravity of the pulse method. For condition (b), radiative heat loss from the 
specimen surface is unavoidable, especially in high-temperature 
experiments. Some algorithms which take the radiative heat loss into con- 
sideration have been theoretically developed by, for example, Cowen [4],  
Cape and Lehman [5],  Heckmann [6],  and Clark and Taylor [7]. Cape 
and Lechman's paper has been referenced quite extensively [8-11] as a 
correction to the theory developed by Parker et al. They account for 
radiative heat loss by replacing the factor 1.370 in Parker's relationship Eq. 
( 1 ) by a function of the Biot number. These authors did not consider non- 
uniform heating, i.e., condition (c), and recently it was pointed out that 
Cape and Lechman had made a mathematical error in their analysis [ 12]. 
For condition (c), analytical calculation of nonuniform heating has been 
made by Watt [ 13] and McKay and Schriempf [ 14]. Based on their solu- 
tion, the nonuniform heating error for specimens of various dimensions has 
been calculated under various energy distributions of heating by Azumi 
et al. [ 15 ] and Baba et al. [ 16, 17 ]. Recently, Cezairliyan et al. [ 18 ] have 
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developed a new system for accurate measurements of thermal diffusivity. 
In their data analysis, the entire region of the temperature history curve is 
fitted to Cape and Lehman's theoretical solution to correct for the radiative 
heat loss. They called this procedure the "curve-fitting method." The par- 
ticular advantage of the curve-fitting method over other methods is that the 
quality of experimental data can be checked by observing the discrepancy 
between the experimental and the theoretical curve. As mentioned above, 
some investigators have theoretically estimated nonuniform heating with 
heat loss from the specimen, but this is not yet experimentally confirmed. 
We have experimentally confirmed the degree of error resulting from non- 
uniform heating using an axially symmetric Gaussian laser beam, and 
developed a modified curve-fitting method to correct for nonuniform heat- 
ing and heat loss from the specimen simply using the solution by Watt 
[13]. 

2. T H E O R Y  

Figure 1 shows the schematic diagram of the geometry for the pulse 
heating method which takes nonuniform heating and radiative heat losses 
into consideration, where a is the sample radius and b is the sample thick- 
ness. The heat conduction equation is 

O:T(x,  r, t) l a T ( x ,  r, t) 8 :T (x ,  r, t) Q(x ,  r, t) l OT(x,  r, t) 
4- + + - -  - 0  (2) 

81"- i" Or 8x  2 ~C ~ 8t 
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Q(r) $ (t) x=O x=b 

Fig. I. A schenlatic diagram of 
the geometry Ibr tile pulse heating 
method. Tile energy Q(r) is instan- 
taneously supplied to the front 
surhlce of the specimen I x = 0 }  at 
time 0. There is some radiative 
heat loss from tile front and back 
surfaces of the specimen. 

,~41) 1~ I - I ~  
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where Q(x, r, t) is the energy absorbed by the specimen, C is the heat 
capacity of the specimen, and ~ is the thermal diffusivity of the specimen. 
If there is radiative heat loss from the front and back surfaces, the bound- 
ary condition can be approximated by 

OT(x, l", t) L 
Ox + b T (X ' r ' t )=O at x = O  (3) 

OT(x, r, t) L 
Ox +-~ T(x, r, t)=-0 at x - - b  (4) 

where L is the radiative heat loss parameter, called the Biot number, and 
is defined as 

4eaT3b 
L - - -  (5) 

2 

where e is the emissivity of the surface, ty is the Stefan-Boltzmann constant, 
T is the steady-state temperature of the specimen, and 2 is the thermal con- 
ductivity of the specimen. Since the temperature difference between the sur- 
face of the specimen and the environment is small for the pulse heating 
method, the usual fourth-power law of radiation heat transfer may be 
approximated by the above linear relation [ 13]. The radiative heat loss in 
the radial direction may be neglected, since there is only a small gap 
between the cylindrical side of the specimen and the inside wall of the 
holder in the actual experiment, and it is estimated that the radiative heat 
loss from the side surface of the specimen is smaller than heat losses from 
the front and back surfaces of the specimen. The front surface of the 
specimen is subjected to pulsewise heating, i.e., the initial condition is 

Q ( x , r , t ) = Q ( r )  at t = 0  for x = 0  (6) 

where Q(r) is the energy absorbed at r, and the analytical solution of 
Eq. (2) is given by Watt [ 13] as the product of the component solutions, 

T(x, r, t )= ToT,(x,  t) Tr(,', t) (7) 

where To= Q~/C, the equilibrium temperature increase, T,(x, t) is the x 
component, T,.(r, t) is the r component, and Qo is the total energy absor- 
bed by the specimen. T,.(x, t) is given by 

T,.(x, t) = ~ Y,(O) Y,,(x) exp - ~ - t U  
n~l 

(8) 
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where 

2( fl ~, + L 2 )}'/2 { fl,, cos fl,,(x'/b) + L sin fl,,(x'/b )} Y,,(x') = t 
{(fl~, + LZ)(fl~, + L 2 + L) + L(fl~, + L2)} ,/2 

(9) 

~z-a-t~/ 

(12) 

where g(r) is the axially symmetric energy distribution absorbed by the 
specimen surface, J .  is the Bessel function of the first kind of order 0, and 
Z~ ( i=  1, 2, 3,...) are positive roots of 

J,(Zi) = 0 (13)  

where J~ is the Bessel function of the first kind of order 1. In Eqs. (12)-(13) 
the definite integral term with respect to r can be integrated numerically or 
analytically, and is independent of t/t~, if the shape of g(r) in the region 
from r = 0  to r = a  is determined experimentally. In this integration g(r) 
need only be axially symmetric. Equations (12) and (13) show that the 
nondimensional time, t/tc, dependence of T,.(x, t) is a function of r and the 
ratio of thickness to radius b/a, if g(r) is axially symmetric. 

In the actual experiment, a radiation detector which detects the 
average temperature of the region of interest is often used as the tem- 
perature detector. From Eq. (7), the back surface temperature response, 
T~,,db/a, L, t), which is within a circle located at the center of the specimen, 
can be estimated by 

Tc~,(b/a, L, t ) =  ToT,.(b, t) It T M  2 r  T,.(r, t) dr 
) robs 

(14) 

T,.(r, t ) = - ~  rg(r) ell'+ ~ J~ 
a- ~ i~t Jo(Zi) 

• ~ rg(r) Jo(Zir/a) dr 

exp 

fl,, (n = I, 2, 3,...) are positive roots of 

2fl,,L 
tan fl,, f l~_L2  (10) 

and tc is the characteristic time defined by 

b 2 
t~= (11) 

~20~ 

Equations (8)-(11) show that the nondimensional time, t/tc, dependence of 
T,.(x, t) is a function of x and L. T,.(r, t) is given by 
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where rob.~ is the radius of the detected area, b/a is the shape parameter 
related to T,.(r, t) and L is the heat loss parameter related to T,.(x, t). If the 
specimen surface is uniformly heated, i.e., g ( r ) =  1, then T,.(r, t ) =  1, and 
T~,(b/a, L, t) is represented as 

T~,,ffb/a, L, t)= ToT,(b, t) (15) 

which is independent of b/a. In the following discussion, the shape 
parameter, b/a is considered 0 for the uniform heating. If there is no heat 
loss from the specimen, i.e., L = 0, T,.(b, t) is given by 

T , . ( b , t ) = l + 2  ~ ( - 1 ) ' e x p  - 
,~ = I 7 ~ - t c /  

(16) 

Substituting Eq. (16) into Eq. (15), we obtain the analytical solution based 
on the conventional t~ _, method [ 1 ]. If the specimen surface is uniformly 
heated, i.e., b/a = O, and there is no heat loss from the specimen, i.e., L = 0, 
the time, t~2(0,0), at which the calculated temperature response, 
T~,,t(O, O, t), reaches T./2 is 

tl 2(0, 0 ) =  1.370t~ (171 

which is the conventional t~ 2 result given in Eq. (1). 

3. APPARATUS 

The experiments were performed using a commercially available 
apparatus (Shinku-Riko Inc., Type TC-7000) for the thermal diffusivity 
measurements. A ruby laser is used for pulse heating the specimen. The 
irradiated area is a circle about 12 mm in diameter, the maximum energy 
per pulse is 7 J, and the pulse duration is about 3 ms. The optical center 
of a ruby laser and the specimen are aligned based on the energy distribu- 
tion absorbed by the specimen's surface which is experimentally determined 
(see Section 5). Time 0 was set at the center of gravity of the laser pulse 
energy on the time scale to correct for the finite pulse effect [3]. A hand- 
made optical reduction filter is used to improve the spatial energy distribu- 
tion of the ruby laser. The optical filter is an approximately 1.5 x 3 x 3-mm 3 
rectangular solid made of acrylic resin and cuts out 70 % of the energy of 
the laser incident on the surface. The optical filter is placed on the optical 
axis outside the furnace part. An InSb infrared radiation detector is used 
as the temperature detector; its response time is about 5 ILs. The tantalum 
slit is placed between the specimen and the detector to avoid direct irradia- 
tion of the detector by the ruby laser. The slit has a 5-mm-diameter hole 



Thermal Diffusivily by I,aser Pulse Heating Method 275 

through its center. The optical centers of the detector and the specimen are 
aligned using a guide beam system, which can be placed at the center of the 
specimen's position. Using this system, the radius of the detected area on 
the specimen, r,,h~ in Eq. (14), is 2.5 mm, which is about half the specimen 
radius, i.e., r,~b,~=a/2. The electronically amplified analog signal is 
digitized and stored in a transient-wave memory with a capacity of 8 k 
words of 10 bits each. The data are then transferred to a personal computer 
for processing. A specimen is placed vertically in the specimen holder, and 
the specimen chamber is evacuated to about 10 3 Torr using a rotary 
pump. The specimen and the specimen holder make only pinpoint contact, 
thus heat conduction between them can be neglected. 

4. SPECIMEN 

Our procedure has been developed and applied to the measurement of 
the lbur specimens shown in Table I. The specimen diameter is 10 mm for 
all materials. Specimens of various thicknesses are prepared in order to 
check the effect of nonuniform heating. Dry graphite carbon is sprayed on 
the front surface to absorb the energy of the beam and on the back surface 
to increase the emissivity. 

5. EXPERIMENTS 

The distribution of energy absorbed by the specimen surface, g(r), 
must be determined to calculate the temperature-response curve using Eq. 
(14). We experimentally determined g(r) according to the following steps. 

(a) A dry graphite/carbon-sprayed copper of cubic block about 
1 x 1 • 1 mm 3 is attached to a platinum platinum-rhodium ther- 
mocouple wire of 0.l-ram diameter. 

(b) The cubic block is placed the position of the center of the 
specimen in the present system without the specimen. 

(c) The ruby laser is irradiated and the time dependence of the tem- 
perature rise of the copper block is determined. 

(d) The cooling part of the observed curve is least-squares fitted to 
the exponential curve. 

(e) The exponential curve is extrapolated to Time 0 and Tm~,.~(0) is 
determined. 

(f) The copper block is shifted to a position at a distance r away 
from the center of the sample in the horizontal or vertical direc- 
tion. 
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(g) T,,,x(r) is determined in the same manner as steps (b)-(d). 

(h) In the region - 1 . 5 a < r < l . 5 a ,  steps (b)-(f) are repeated. 

(i) The energy distribution is estimated using 

Tm,x(r) 
g(r) = 

T ...... (0) 
18) 

Figure 2 shows the distribution of energy absorbed by the specimen 
surface irradiated directly by the ruby laser. The center of the specimen sur- 
face is intensely heated. The dashed line in Fig. 2 shows the values 
calculated using 

/~ / 
g(r) = exp - (19) 

assuming a Gaussian distribution. We call this nonuniform heating and 
calculate the temperature response using Eq. (19). We attempted to 
improve the uniformity of the energy absorbed by the specimen surface by 
reducing the intensity of the laser around the center using an optical reduc- 
tion filter. Figure 3 shows the distribution of energy absorbed by the 
specimen surface, when the nonuniform ruby laser shown in Fig. 2 is 
irradiated through a handmade optical reduction filter. Figure 3 shows that 
in the region, - a  < r < a the specimen surface is more uniformly heated. 

Figure 4 shows an example of the theoretical curve for the nonuniform 
heating calculated using Eq. (14) with Eq. (19) under the conditions of 

i i I i i 
00bs. (Hor izonta l )  

~"  ~ [] Obs.(Vertical) 
"~  1.0 --1~ ( ~  --- Calcu. 
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~, .o 8,,o s 0 
E~:~ ~ ~ 

w . 0 0 ~  GO,,[ 3 
0.0 ..... ];';~ . . . . . .  i . . . . . . . . .  I . . . . . . . . .  i , ,  , O  , ' , ' , " O l - . . ~  

-1.0 -0.5 0.0 0.5 1.0 
Posi t ion r ,cm 

Fig. 2. Energy distribution o f  the ruby laser used in 
this work. Tile dashed line shows the curve calculated 
using Eq. (19). 
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Fig. 4. Example o1" the theoretical curve for the nonuniform heating 
calculated using Eq. (14) with Eq. 119) under the conditions of radius 
of the detected area r,,h, = a/2, shape parameter  h a  = 0.6 and the heat 
loss parameter  L =0 .0  and 0.3, and an example of the theoretical 
curve for the uniform heating calculated using Eq. (15) under the 
conditions of heat loss parameter  L = 0.0 and 0.3. 
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radius of the detected area r,,h~ = a/2, shape parameter b/a = 0.6, and heat 
loss parameter L = 0.0 and 0.3, and an example of the theoretical curve for 
uniform heating calculated using Eq. (15) under the conditions of L = 0.0 
and 0.3. Figure 4 shows that the half-time t~ 2/t~ for axially symmetric 
Gaussian nonuniform heating, as shown in Fig. 2 or Eq. (19), is shorter 
than that of the conventional method, i.e., t~2(b/a,L)/t~.=l.217 for 
b/a =0.6 and L =0.0. Figure 4 show that the half-time t~ 2/t~ for both non- 
uniform and uniform heating becomes short as the heat loss effect becomes 
large, i.e., t~ 2(b/a, L)/t~= 1.076 for b/a=0.6 and L = 0 . 3  under nonuniform 
heating conditions, and t~ 2(b/a,L)/t~= 1.165 for L = 0 . 3  under uniform 
heating conditions. This estimation agrees with the other reported theoreti- 
cal considerations [4-7, 13-17]. Figure 4 shows that the time dependence 
of the back surface under the conditions of axially symmetric Gaussian 
nonuniform heating without any heat loss from the specimen is apparently 
the same as that under the conditions of uniform heating with heat loss 
from the specimen. This resemblance of the temperature history curve for 
axially symmetric Gaussian nonuniform heating and heat loss effect leads 
to the risk of misinterpreting the axially symmetric Gaussian nonuniform 
heating effect as the heat loss effect, if the distribution of energy absorbed 
by the specimen has not been confirmed. It is concluded that in the actual 
experiment the distribution of energy absorbed by the specimen must be 
checked in order to apply the theoretically derived correction method to 
correct for the heat loss effect, which does not take account of the non- 
unitbrm heating effect. 

To correct for the nonuniform heating and heat loss effect estimated 
above, we introduce the correction factor 

tl 2(b/a, L) tj 2(b/a, L) 
K(b/a, L) - - (20) 

t~ 2(0, 0) 1.370tc 

The correction factor K(b/a, L) replaces the factor 1.370 in Parker's rela- 
tionship Eq. (1) by a function of b/a and L. Using this thctor, thermal 
diffusivity can be determined using 

~ =~*K(b/a, L) (21) 

where ~* is the apparent thermal diflhsivity derived from the observed 
curve using 

b 2 
~* = 1 . 3 7 0 -  (22) 

7r 21 t 2 

which is that of the conventional t l 2 method. 
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Figure 5 shows how the correction factor depends on b/a and L for 
nonuniform heating from Eq. (14) and L for uniform heating from Eq. 
(15). From Fig. 5, it is clear that the thermal diffusivity obtained by the 
conventional t, 2 method is l l  % smaller than the true value for axially 
symmetric Gaussian nonuniform heating, b/a=0.4, absent heat loss. 
Although the shape parameter, b/a, can be determined easily from the 
dimensions of the specimen, the heat loss parameter, L, must be deter- 
mined from the comparison of observed and theoretical normalized time 
dependence curves by the following steps. 

(a) The time axis of the observed temperature rise T,+~(t) is nor- 
malized so that t, 2/&* = 1.370, where &* is the apparent charac- 
teristic time defined as 

b 2 
t *  - / 2 3  ) 

7[25 * 

where c~* is tile apparent thermal diffusivity obtained from Eq. 
(22). 

(b) The object function defined as 

=~/EL ,{ T,.,~I t i / t*  ) / T  ...... - T ~ . , I b / a .  L.  , i / t*  ) / 'r  ...... } "- 
F(b/a, L) (24) 

11 

is calculated, where T~,~(b/a, L, t/&*)/T ..... is the calculated curve, 
the time axis normalized so that t, ,(b/a, L)/t* = 1.370. 
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(c) The heat loss parameter dependence of F(b/a, L)  is calculated. 

(d) The curve which has minimum F(b/a, L)  is adopted as the best- 
fit curve. 

Figure 6 shows examples of the theoretical curves, the time axis normalized 
so that t~ ,_(b/a, L)/t~* = 1.370, for nonuniform heating and uniform heating, 
of which original time dependence is shown in Fig. 4. 

A time normalization technique using t~/2 similar to the present 
method has been utilized by other researchers to correct for heat loss. 
Clark and Taylor [7 ]  used a few points of the heating part of these curves 
and Cowan [4]  used a few points of the cooling part of these curves. In 
contrast to these methods, the present method uses the entire curve in Eq. 
(24). This method is superior to the other methods for the following 
reasons, as for the curve-fitting method [ 18]. 

(a) The other methods may be more sensitive to experimental noise 
than the present method when determing the correction factor. 

(b) When using the present method, the quality of the experimental 
data can be checked by observing the discrepancy between the 
experimental and the theoretical curves. 
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Fig. 6. Example of the theoretical curve, the time axis normalized so 
that t l 2(h/a, L)/t* = 1.370, lbr nonuniform heating and uniform heating, 
of which the original time dependence is shown in Fig. 4. 
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As for reason (b), in the actual experiment, if the discrepancy between the 
observed and the theoretical curves becomes large, we must check the 
experimental conditions, e.g., the energy distribution absorbed by the 
specimen surface. We call the present procedure the modified curve-fitting 
method to account for the nonuniform heating. 

Figure 7 shows a typical example of the observed datm time axis nor- 
realized so that t~ ,_(b/a, L)/t~*= 1.370, for molybdenum (2.542 mm in 
thickness at 298.15K) under the nonuniform heating condition at 
298.15K. The apparent thermal diffusivity ~*=0.631  cm2.s  ~, and the 
apparent characteristic time t~* = 10.37 ms. The dashed line shows the 
theoretical curve calculated using Eq. (14) with Eq. (19) for b/a=0.5 and 
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I= - -  Observed Curve 
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0 .0  - - - -  

"1 , J I i i i i i i i i i i i i i i i i i i i I i , i I J i , i i 

0 5 10  15 

T i m e  t/t  c" 

I:ig. 7. Example of tile observed curve, the time axis normalized so that 
t I , I h ' a , L ) , t * = l . 3 7 0 ,  for molybdenum (2.542 mm in thickness sit 298.15 K) 
under nonuniform heating conditions sit 298.15 K. The dashed line is the 
theoretical curve, the time axis normalized so that t~ 2(h'a, L) t* = 1.370, using 
Eq. (141 with Eq. (19) for shape parameter  h a = 0 . 5  and heat loss parameter 
L=0 .0 .  The apparent  thermal diffusivity :~* obtained by the conventional tl 2 
method is 0.631 cm-'. s ~. the apparent characteristic time t~* is 10.37 ms, and 
the corrected thermal diffusivity �9 obtained by the present modified curve-fitting 
method is 0.560 cm 2 . s - I .  
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L = 0.0, t ime axis is no rmal i zed  so that  t~_(b/a, L)/t* = 1.370. Since, under  
the above  condi t ion ,  the cor rec t ion  factor  K(b/a,L)=0.8877,  the true 
the rmal  diffusivity a equals  0.560 cm 2. s -  t. The  qual i ty  of  the measurement  
can be j u d g e d  by the fit between the observed  and the theoret ical  curve. 
This  result  shows that  Eq. (14) with Eq. (19) accura te ly  represents  the t ime 
dependence  of  the t empera tu re  rise of  the back  surface under  the non-  
uniform heat ing  cond i t ions  and  thus the cor rec t ion  factor  K(b/a, L) should  
correct  for the nonun i fo rm heating.  

F igure  8 shows a typical  example  of  the observed  da ta ,  t ime axis nor-  
mal ized  so that  t~ 2(b/a, L)/t* = 1.370, for the same specimen as shown in 
Fig. 7 with uniform heat ing  at 298.15 K. The  difference in the shapes of  the 
observed  t empera tu re  rise curves in Fig. 7 and Fig. 8 reflects the difference 
in the spat ia l  d i s t r ibu t ion  of  energy abso rbed  by the specimen surface. The 
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Fig. 8. Example of the observed curve, the time axis normalized so that 
t~ 2(b/a. L)/t~* = 1.370, Ibr the same molybdenum specimen as shown in Fig. 7 
under tmilbrm heating at 298.15 K. The dashed line is the theoretical curve, the 
time axis normalized so that t~ 2(b/a, L)/t~* = 1.370, ct, lculated using Eq. (I 5) lbr 
heat loss parameter L=0.0, i.e.. Eq. (16). The apparent thermal diffusivity ~* 
obtained by the conventional t~ _, method is 0.557 cm 2.s -~, and the apparent 
characteristic time t* is 11.76 ms. Under this condition, 0~* and t* equal ~ and t~. 
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a p p a r e n t  t h e r m a l  di f fusivi ty  ~ * =  0.557 cm 2. s ~, a n d  the  a p p a r e n t  cha rac -  

terist ic t ime  C* = 11.76 ms. T h e  d a s h e d  l ine shows  the theore t ica l  cu rve  
ca l cu l a t ed  us ing  Eq. (15) for L = 0 . 0 ,  i.e., Eq. (16),  wh ich  c o r r e s p o n d s  to 

Pa rke r ' s  ana ly t i c a l  so lu t ion .  T h e  obse rved  curve  agrees  wi th  the  theore t ica l  
cu rve  in this  t ime  range .  It  is c o n c l u d e d  tha t  u n d e r  this c o n d i t i o n ,  o~*, C*, 
a n d  K(b/a,L)=o~,  C., a n d  1.0, respect ively.  Th i s  resul t  shows  tha t  the 
i m p r o v e d  r u b y  laser  c an  be c o n s i d e r e d  as a u n i f o r m  heat  source ,  a n d  tha t  
an  op t ica l  filter succeeds  in r e d u c i n g  the  n o n u n i f o r m i t y  of  the  laser. 

F i g u r e  9 shows  a typica l  e x a m p l e  of  the obse rved  da ta ,  t ime  axis n o r -  

ma l i zed  so tha t  tl ,(b/a, L) / t*  = 1.370, for M A C O R  (2.486 m m  in th ickness  
at 298.15 K )  u n d e r  u n i f o r m  h e a t i n g  c o n d i t i o n s  i.e., b/a=O, with  heat  loss 
at 8 7 3 . 1 5 K .  The  a p p a r e n t  t h e r m a l  diffusivi ty  a * = 6 . 5 9 x 1 0  3 c m 2 . s  ~, 
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Fig. 9. Example of the observed ct, rve. the time axis normalized so that 
t~ 2(h/a, L)/t*= 1.370, for MACOR (2.486 mm in thickness at 298.15 K) under 
uniform heating with heat loss at 873.15 K. The dashed curve is the theoretical 
ct, rve, the time axis normalized so that t I 2(b/a. L )/t* = 1.370. using Eq. (15) for 
heat loss parameter L = 0.18. The apparent thermal diffusivity ~x* obtained by 
the conventional tie method is 6.59 x 10 ~ cm 2. s i, the apparent characteristic 
time t* is 1.302 s, and the corrected thermal diffusivity ~ obtained by the present 
modified curve-fitting method is 5.88 x 10 -3 cm 2. s-~. 
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and the apparent  characteristic time t* = 1.302 s. The heat loss parameter  
is determined by the present modified curve-fitting method. Figure 10 
shows the relationship between the heat loss parameter  L and the object 
function F(b/a, L) [see Eq. (24)] for the curves shown in Fig. 9. The object 
function F(b/a, L) is calculated under the following conditions, 

Time step [ = ( t ,~  ,/t,*)-(t/t~*)]" 

Time range: 

Number  of data points ( =n) :  

0.05 

t,/t~ =0.05, t,,/t* = 1.50 

3OO 

Figure 10 shows that the theoretical curve for L =0.18 gives the best match 
to the experimental curve. Since the correction factor K(b/a, L) equals 
0.8926 for L=0 .18 ,  the true thermal diffusivity 0 t=5 .88x10  3cmZ.s  c 
The dashed line in Fig. 9 shows the theoretical curve calculated using Eq. 
(15) for L=0 .18 ,  time axis normalized so that tj ~_(b/a, LI/t* = 1.370. This 
result shows that the present modified curve-fitting method accurately 
represents the time dependence of the temperature rise of the back surface 
with heat loss from the specimen, and thus the correction factor KIb/a, L) 
should accurately correct for heat loss, similarly to the case of nonunitbrm 

._g 

' '  | " 1 '  

�9 , = 

0.0 0.1 0.2 0.3 
Heat Loss Parameter L 

Fig. I0, Heat loss parameter dependence of the object 
function Fth,u, L) for the data shown in Fig. 9. As the 
specime~ surf~tce is unilormly heated, the shape parameter. 
h/~;, equals 0 according to our delinition (Ibr details, see, 
the text 1. The minimum at L = 0.18 determines the value of 
the Biot number L used to generate the dashed curve in 
Fig. 9. 
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heating. Table II lists thermal diffusivity values obtained by the present 
method compared with those calculated by commonly used methods to 
correct for heat loss under the uniform heating condition using the data 
shown in Fig. 9. There is essentially no difference between the thermal dif- 
fusivity values after heat loss correction, which is natural as all methods are 
based on the same theoretical formula. The particular advantage of the pre- 
sent method is that the quality of experimental data can be checked by 
observing the discrepancy between the experimental and the theoretical 
curve as shown in Fig. 9 using the object function as shown in Fig. 10. 

Figure I1 shows the thermal diffusivity at 298.15 K obtained by the 
following three methods: (a) the conventional t~ 2 method under non- 
uniform heating conditions, (b) the present modified curve-fitting method 
under nonuniform heating conditions, and (c) the present modified curve- 
fitting method under the uniform heating conditions. For all the samples, 
as the shape parameter increases, the thermal diffusivity obtained by the 
conventional t t 2 method under nonuniform heating condition increases. 
For aluminum and molybdenum, this tendency results from the axially 
symmetric Gaussian nonuniform heating effect, which has been theoreti- 
cally estimated from K(b/a, L) dependence on b/a and experimentally con- 
firmed from the agreement between the shape of the entire observed tem- 
perature history curve and the theoretical curve without heat loss effect for 
all of these specimens as in Figs 7 and 8. For aluminum and molybdenum, 
thermal diffusivities obtained by the present modified curve-fitting method 
are independent of the shape parameter and energy distribution of the 
heating source and agree with the reported values [19] within 3%. For 

Table  !!. C o m p a r i s o n  Between the The rma l  Diffttsivity Values Cor rec ted  Ibr Heat  Loss 

Effect Based on Different Da ta  Analys is  A lgor i thms  Irom the T e m p e r a t u r e  His tory  Curve  

Shown in Fig. 9 Under  Unifornl  Hea t ing  C o n d i t i o n s  

Da ta  ana lys i s  a lgor i thnas  

The rma l  diffusivity, x 

(cm 2. s - I I 

Present  me thod  5.88 x 10 3 

Cowan [4] 
T(5tt 2)"T(tl 2) 5 .83x  10 3 

7"( 10t n :) /Ti t  u 2) 5.83 x l0 3 

C la rk  and  Tay lo r  [ 7 ]  

Io.7/Io3 6.01 x 10 3 

to.sit.. 4 6.01 x I0 ' 

Conven t i ona l  t~ 2 me thod  

I does  not  include heat  loss ill Ibrnaulat ion ) 6.59 x 10 - ~ 
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Fig. I1. The relationships between the thermal dill'usivity and shape 
parameter Ibr aluminuna, molybdenunl, altmaina, and MACOR at 
298.15 K. Open triangles represent tile experimental values obtained 
by tile conventional t I _~ method under nonunitbrm heating condi- 
tions, open circles represent the experimental values obtained by the 
present modified curve-fitting method under nonunilbrm heating con- 
ditions and filled circles represent the experimental values obtained 
by the present modified curve-fitting method under uniform heating 
conditions. Dashed lines show the values reported in Relk. 19 and 20. 

a lumina  and M A C O R ,  the shape p a r a m e t e r  dependence  of  the thermal  

diffusivities ob ta ined  by  the conven t iona l  t~ 2 me thod  results not  only  from 
the axial ly symmet r i c  Gauss i an  nonun i fo rm heat ing  effect but  also from 
heat  loss. It should  be emphas ized  tha t  the d i s t r ibu t ion  of  energy abso rbed  
by the specimen surface must  be checked to confi rm the degree of  the 

X41} I,~ I-1 ~) 
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axially symmetric Gaussian nonuniform heating effect and heat loss effect 
simultaneously in the actual measurement For alumina and MACOR, ther- 
mal diffusivities obtained by the present modified curve-fitting method are 
independent of the shape parameter and energy distribution of the heating 
source, and the value for alumina agrees with the reported values [20] 
within 3 %. 

Figures 12 and 13 show the temperature dependence of the thermal 
diffusivity of molybdenum and MACOR, respectively. Open symbols repre- 
sent the experimental values obtained by the present modified curve-fitting 
method under nonuniform conditions and filled symbols represent the 
experimental values obtained by the present modified curve-fitting method 
under uniform conditions. The dashed line shows the values reported in 
Ref. 19. The values obtained by the present modified curve-fitting method 
are independent of the shape parameter and agree with the reported values 
[ 19 ] within 3 % under uniform and nonuniform heating conditions. In this 
experiment the maximum heat loss parameter L is 0.29 for MACOR at 
1098.15 K. It is concluded that our present procedure sufficiently corrected 
for appreciable heat loss effect with an axially symmetric Gaussian non- 
uniform heating effect above room temperature. 

0.71_ I I I I 

Shape Parameter 
7 OO b/a=0.2022 
~ 0.6 AA 0.4062 

- ", ,A ~ D I  0.6072 
..... Ref.19 
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0.3 . . . .  1 . . . .  I . . . .  I . . . .  I . . . .  
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Fig. 12. Temperature dependence of tile thermal dillusivity of 
molybdenum. Open symbols represent tile experimental values 
obtained by tile present modified curve-fitting method under non- 
uniform heating conditions and filled symbols represent the 
experimental vah,es obtained by the present modified ct, rve-fitting 
method under uniform heating conditions. The dashed line shows the 
values reported in Rel~ 19. 
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Fig. 13. Temperature dependence of the thermal diffusivity of 
MACOR. Open symbols represent the experimental values 
obtained by the present modified curve-fitting method under 
nonunifiwna heating conditions, and Iilled symbols represent 
the experimental vak~es obtained by the present modified 
curve-fitting method under uniform conditions. 
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